MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. C67300 Bronze

AISI 202 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
12
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 490 to 590
300
Tensile Strength: Ultimate (UTS), MPa 700 to 980
500
Tensile Strength: Yield (Proof), MPa 310 to 580
340

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 910
130
Melting Completion (Liquidus), °C 1400
870
Melting Onset (Solidus), °C 1360
830
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
95
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
55
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25 to 35
17
Strength to Weight: Bending, points 23 to 29
17
Thermal Diffusivity, mm2/s 4.0
30
Thermal Shock Resistance, points 15 to 21
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 63.5 to 71.5
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 7.5 to 10
2.0 to 3.5
Nickel (Ni), % 4.0 to 6.0
0 to 0.25
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5