MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. C87400 Brass

AISI 202 stainless steel belongs to the iron alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 45
21
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
41
Tensile Strength: Ultimate (UTS), MPa 700 to 980
390
Tensile Strength: Yield (Proof), MPa 310 to 580
160

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1400
920
Melting Onset (Solidus), °C 1360
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
44
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
65
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
120
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25 to 35
13
Strength to Weight: Bending, points 23 to 29
14
Thermal Diffusivity, mm2/s 4.0
8.3
Thermal Shock Resistance, points 15 to 21
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
79 to 85.5
Iron (Fe), % 63.5 to 71.5
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 7.5 to 10
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
2.5 to 4.0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8