MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. N08926 Stainless Steel

Both AISI 202 stainless steel and N08926 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is N08926 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 45
40
Fatigue Strength, MPa 290 to 330
290
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 490 to 590
500
Tensile Strength: Ultimate (UTS), MPa 700 to 980
740
Tensile Strength: Yield (Proof), MPa 310 to 580
330

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
420
Maximum Temperature: Mechanical, °C 910
1100
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 40
84
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 20
45
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
240
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25 to 35
25
Strength to Weight: Bending, points 23 to 29
22
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 15 to 21
16

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.020
Chromium (Cr), % 17 to 19
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 63.5 to 71.5
41.7 to 50.4
Manganese (Mn), % 7.5 to 10
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 4.0 to 6.0
24 to 26
Nitrogen (N), % 0 to 0.25
0.15 to 0.25
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010