MakeItFrom.com
Menu (ESC)

AISI 202 Stainless Steel vs. S17400 Stainless Steel

Both AISI 202 stainless steel and S17400 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 202 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 300
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 45
11 to 21
Fatigue Strength, MPa 290 to 330
380 to 670
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 490 to 590
570 to 830
Tensile Strength: Ultimate (UTS), MPa 700 to 980
910 to 1390
Tensile Strength: Yield (Proof), MPa 310 to 580
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 910
850
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
14
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 40
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 20
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 840
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25 to 35
32 to 49
Strength to Weight: Bending, points 23 to 29
27 to 35
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 15 to 21
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.070
Chromium (Cr), % 17 to 19
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 63.5 to 71.5
70.4 to 78.9
Manganese (Mn), % 7.5 to 10
0 to 1.0
Nickel (Ni), % 4.0 to 6.0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.060
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030