MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. AWS ER120S-1

Both AISI 204 stainless steel and AWS ER120S-1 are iron alloys. They have 78% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 39
17
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
930
Tensile Strength: Yield (Proof), MPa 380 to 1080
830

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.2
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.9
Embodied Energy, MJ/kg 35
25
Embodied Water, L/kg 130
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
1850
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 40
33
Strength to Weight: Bending, points 24 to 31
27
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 16 to 24
27

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 15 to 17
0 to 0.6
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 69.6 to 76.4
92.4 to 96.1
Manganese (Mn), % 7.0 to 9.0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 1.5 to 3.0
2.0 to 2.8
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5