MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. EN 1.7376 Steel

Both AISI 204 stainless steel and EN 1.7376 steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is EN 1.7376 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 330
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 39
20
Fatigue Strength, MPa 320 to 720
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
710
Tensile Strength: Yield (Proof), MPa 380 to 1080
460

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Mechanical, °C 850
600
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.1
Embodied Energy, MJ/kg 35
29
Embodied Water, L/kg 130
88

Common Calculations

PREN (Pitting Resistance) 20
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
130
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
560
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27 to 40
25
Strength to Weight: Bending, points 24 to 31
23
Thermal Diffusivity, mm2/s 4.1
6.9
Thermal Shock Resistance, points 16 to 24
20

Alloy Composition

Carbon (C), % 0 to 0.030
0.12 to 0.19
Chromium (Cr), % 15 to 17
8.0 to 10
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 69.6 to 76.4
86.2 to 90.6
Manganese (Mn), % 7.0 to 9.0
0.35 to 0.65
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 1.5 to 3.0
0 to 0.4
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0 to 0.050