MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. EN 1.7703 Steel

Both AISI 204 stainless steel and EN 1.7703 steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 330
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 39
20
Fatigue Strength, MPa 320 to 720
320 to 340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Shear Strength, MPa 500 to 700
420 to 430
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
670 to 690
Tensile Strength: Yield (Proof), MPa 380 to 1080
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
460
Melting Completion (Liquidus), °C 1410
1470
Melting Onset (Solidus), °C 1370
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
2.5
Embodied Energy, MJ/kg 35
35
Embodied Water, L/kg 130
61

Common Calculations

PREN (Pitting Resistance) 20
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
570 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 40
24
Strength to Weight: Bending, points 24 to 31
22
Thermal Diffusivity, mm2/s 4.1
11
Thermal Shock Resistance, points 16 to 24
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0.11 to 0.15
Chromium (Cr), % 15 to 17
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 69.6 to 76.4
94.6 to 96.4
Manganese (Mn), % 7.0 to 9.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.5 to 3.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0.15 to 0.3
0 to 0.012
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35