MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. EN 1.8915 Steel

Both AISI 204 stainless steel and EN 1.8915 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is EN 1.8915 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 330
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 39
19
Fatigue Strength, MPa 320 to 720
340
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 500 to 700
400
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
640
Tensile Strength: Yield (Proof), MPa 380 to 1080
490

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
400
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
46
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.7
Embodied Energy, MJ/kg 35
24
Embodied Water, L/kg 130
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
110
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 40
23
Strength to Weight: Bending, points 24 to 31
21
Thermal Diffusivity, mm2/s 4.1
12
Thermal Shock Resistance, points 16 to 24
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 15 to 17
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 69.6 to 76.4
95.2 to 98.9
Manganese (Mn), % 7.0 to 9.0
1.1 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.5 to 3.0
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.15 to 0.3
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2