MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. CC382H Copper-nickel

AISI 204 stainless steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 330
130
Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 23 to 39
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
53
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
490
Tensile Strength: Yield (Proof), MPa 380 to 1080
290

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 850
260
Melting Completion (Liquidus), °C 1410
1180
Melting Onset (Solidus), °C 1370
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 17
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
5.2
Embodied Energy, MJ/kg 35
76
Embodied Water, L/kg 130
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
85
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27 to 40
15
Strength to Weight: Bending, points 24 to 31
16
Thermal Diffusivity, mm2/s 4.1
8.2
Thermal Shock Resistance, points 16 to 24
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 15 to 17
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 69.6 to 76.4
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 7.0 to 9.0
0.5 to 1.0
Nickel (Ni), % 1.5 to 3.0
29 to 32
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15