AISI 204 Stainless Steel vs. Grade 27 Titanium
AISI 204 stainless steel belongs to the iron alloys classification, while grade 27 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is grade 27 titanium.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
110 |
Elongation at Break, % | 23 to 39 | |
27 |
Fatigue Strength, MPa | 320 to 720 | |
170 |
Poisson's Ratio | 0.28 | |
0.32 |
Shear Modulus, GPa | 77 | |
41 |
Shear Strength, MPa | 500 to 700 | |
180 |
Tensile Strength: Ultimate (UTS), MPa | 730 to 1100 | |
270 |
Tensile Strength: Yield (Proof), MPa | 380 to 1080 | |
230 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
420 |
Maximum Temperature: Mechanical, °C | 850 | |
320 |
Melting Completion (Liquidus), °C | 1410 | |
1660 |
Melting Onset (Solidus), °C | 1370 | |
1610 |
Specific Heat Capacity, J/kg-K | 480 | |
540 |
Thermal Conductivity, W/m-K | 15 | |
21 |
Thermal Expansion, µm/m-K | 17 | |
8.7 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
3.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.9 | |
7.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 10 | |
37 |
Density, g/cm3 | 7.7 | |
4.5 |
Embodied Carbon, kg CO2/kg material | 2.4 | |
33 |
Embodied Energy, MJ/kg | 35 | |
530 |
Embodied Water, L/kg | 130 | |
320 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 240 to 250 | |
70 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 360 to 2940 | |
240 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
35 |
Strength to Weight: Axial, points | 27 to 40 | |
17 |
Strength to Weight: Bending, points | 24 to 31 | |
21 |
Thermal Diffusivity, mm2/s | 4.1 | |
8.8 |
Thermal Shock Resistance, points | 16 to 24 | |
21 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0 to 0.080 |
Chromium (Cr), % | 15 to 17 | |
0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 69.6 to 76.4 | |
0 to 0.2 |
Manganese (Mn), % | 7.0 to 9.0 | |
0 |
Nickel (Ni), % | 1.5 to 3.0 | |
0 |
Nitrogen (N), % | 0.15 to 0.3 | |
0 to 0.030 |
Oxygen (O), % | 0 | |
0 to 0.18 |
Phosphorus (P), % | 0 to 0.040 | |
0 |
Ruthenium (Ru), % | 0 | |
0.080 to 0.14 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Titanium (Ti), % | 0 | |
99 to 99.92 |
Residuals, % | 0 | |
0 to 0.4 |