MakeItFrom.com
Menu (ESC)

AISI 204 Stainless Steel vs. C17465 Copper

AISI 204 stainless steel belongs to the iron alloys classification, while C17465 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 204 stainless steel and the bottom bar is C17465 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 39
5.3 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 500 to 700
210 to 540
Tensile Strength: Ultimate (UTS), MPa 730 to 1100
310 to 930
Tensile Strength: Yield (Proof), MPa 380 to 1080
120 to 830

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 850
210
Melting Completion (Liquidus), °C 1410
1080
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
220
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22 to 51
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
23 to 52

Otherwise Unclassified Properties

Base Metal Price, % relative 10
45
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
4.1
Embodied Energy, MJ/kg 35
64
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240 to 250
47 to 90
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 2940
64 to 2920
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 40
9.7 to 29
Strength to Weight: Bending, points 24 to 31
11 to 24
Thermal Diffusivity, mm2/s 4.1
64
Thermal Shock Resistance, points 16 to 24
11 to 33

Alloy Composition

Aluminum (Al), % 0
0 to 0.2
Beryllium (Be), % 0
0.15 to 0.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
95.7 to 98.7
Iron (Fe), % 69.6 to 76.4
0 to 0.2
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 7.0 to 9.0
0
Nickel (Ni), % 1.5 to 3.0
1.0 to 1.4
Nitrogen (N), % 0.15 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.5
Residuals, % 0
0 to 0.5