MakeItFrom.com
Menu (ESC)

AISI 205 Stainless Steel vs. 201.0 Aluminum

AISI 205 stainless steel belongs to the iron alloys classification, while 201.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is 201.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 440
95 to 140
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11 to 51
4.4 to 20
Fatigue Strength, MPa 410 to 640
120 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 560 to 850
290
Tensile Strength: Ultimate (UTS), MPa 800 to 1430
370 to 470
Tensile Strength: Yield (Proof), MPa 450 to 1100
220 to 400

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
570
Specific Heat Capacity, J/kg-K 480
870
Thermal Expansion, µm/m-K 18
19

Otherwise Unclassified Properties

Base Metal Price, % relative 11
38
Density, g/cm3 7.6
3.1
Embodied Carbon, kg CO2/kg material 2.6
8.7
Embodied Energy, MJ/kg 37
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 430
19 to 63
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 3060
330 to 1160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
45
Strength to Weight: Axial, points 29 to 52
33 to 42
Strength to Weight: Bending, points 25 to 37
37 to 44
Thermal Shock Resistance, points 16 to 29
19 to 25

Alloy Composition

Aluminum (Al), % 0
92.1 to 95.1
Carbon (C), % 0.12 to 0.25
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
4.0 to 5.2
Iron (Fe), % 62.6 to 68.1
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.55
Manganese (Mn), % 14 to 15.5
0.2 to 0.5
Nickel (Ni), % 1.0 to 1.7
0
Nitrogen (N), % 0.32 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Silver (Ag), % 0
0.4 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.1