MakeItFrom.com
Menu (ESC)

AISI 205 Stainless Steel vs. 204.0 Aluminum

AISI 205 stainless steel belongs to the iron alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 440
90 to 120
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 11 to 51
5.7 to 7.8
Fatigue Strength, MPa 410 to 640
63 to 77
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 800 to 1430
230 to 340
Tensile Strength: Yield (Proof), MPa 450 to 1100
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 880
170
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
580
Specific Heat Capacity, J/kg-K 480
880
Thermal Expansion, µm/m-K 18
19

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.6
8.0
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 430
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 3060
220 to 350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 26
46
Strength to Weight: Axial, points 29 to 52
21 to 31
Strength to Weight: Bending, points 25 to 37
28 to 36
Thermal Shock Resistance, points 16 to 29
12 to 18

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Carbon (C), % 0.12 to 0.25
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
4.2 to 5.0
Iron (Fe), % 62.6 to 68.1
0 to 0.35
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 14 to 15.5
0 to 0.1
Nickel (Ni), % 1.0 to 1.7
0 to 0.050
Nitrogen (N), % 0.32 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15