MakeItFrom.com
Menu (ESC)

AISI 205 Stainless Steel vs. 5026 Aluminum

AISI 205 stainless steel belongs to the iron alloys classification, while 5026 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is 5026 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 11 to 51
5.1 to 11
Fatigue Strength, MPa 410 to 640
94 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 560 to 850
150 to 180
Tensile Strength: Ultimate (UTS), MPa 800 to 1430
260 to 320
Tensile Strength: Yield (Proof), MPa 450 to 1100
120 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 880
210
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1340
510
Specific Heat Capacity, J/kg-K 480
890
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 7.6
2.8
Embodied Carbon, kg CO2/kg material 2.6
8.9
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 430
15 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 3060
100 to 440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 26
49
Strength to Weight: Axial, points 29 to 52
26 to 32
Strength to Weight: Bending, points 25 to 37
33 to 37
Thermal Shock Resistance, points 16 to 29
11 to 14

Alloy Composition

Aluminum (Al), % 0
88.2 to 94.7
Carbon (C), % 0.12 to 0.25
0
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0.1 to 0.8
Iron (Fe), % 62.6 to 68.1
0.2 to 1.0
Magnesium (Mg), % 0
3.9 to 4.9
Manganese (Mn), % 14 to 15.5
0.6 to 1.8
Nickel (Ni), % 1.0 to 1.7
0
Nitrogen (N), % 0.32 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0.55 to 1.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants