MakeItFrom.com
Menu (ESC)

AISI 205 Stainless Steel vs. AWS E385

Both AISI 205 stainless steel and AWS E385 are iron alloys. They have 67% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is AWS E385.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 11 to 51
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Tensile Strength: Ultimate (UTS), MPa 800 to 1430
580

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Melting Completion (Liquidus), °C 1380
1440
Melting Onset (Solidus), °C 1340
1390
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 7.6
8.1
Embodied Carbon, kg CO2/kg material 2.6
5.8
Embodied Energy, MJ/kg 37
79
Embodied Water, L/kg 150
200

Common Calculations

PREN (Pitting Resistance) 23
36
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 29 to 52
20
Strength to Weight: Bending, points 25 to 37
19
Thermal Shock Resistance, points 16 to 29
15

Alloy Composition

Carbon (C), % 0.12 to 0.25
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
19.5 to 21.5
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 62.6 to 68.1
41.8 to 50.1
Manganese (Mn), % 14 to 15.5
1.0 to 2.5
Molybdenum (Mo), % 0
4.2 to 5.2
Nickel (Ni), % 1.0 to 1.7
24 to 26
Nitrogen (N), % 0.32 to 0.4
0
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.020