AISI 205 Stainless Steel vs. R60901 Alloy
AISI 205 stainless steel belongs to the iron alloys classification, while R60901 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.
For each property being compared, the top bar is AISI 205 stainless steel and the bottom bar is R60901 alloy.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
98 |
Elongation at Break, % | 11 to 51 | |
17 to 22 |
Poisson's Ratio | 0.28 | |
0.34 |
Shear Modulus, GPa | 77 | |
37 |
Tensile Strength: Ultimate (UTS), MPa | 800 to 1430 | |
500 to 580 |
Tensile Strength: Yield (Proof), MPa | 450 to 1100 | |
350 to 390 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Specific Heat Capacity, J/kg-K | 480 | |
270 |
Thermal Expansion, µm/m-K | 18 | |
6.3 |
Otherwise Unclassified Properties
Density, g/cm3 | 7.6 | |
6.6 |
Embodied Water, L/kg | 150 | |
270 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 150 to 430 | |
88 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 510 to 3060 | |
640 to 760 |
Stiffness to Weight: Axial, points | 14 | |
8.3 |
Stiffness to Weight: Bending, points | 26 | |
23 |
Strength to Weight: Axial, points | 29 to 52 | |
21 to 25 |
Strength to Weight: Bending, points | 25 to 37 | |
21 to 24 |
Thermal Shock Resistance, points | 16 to 29 | |
58 to 67 |
Alloy Composition
Carbon (C), % | 0.12 to 0.25 | |
0 |
Chromium (Cr), % | 16.5 to 18.5 | |
0 |
Iron (Fe), % | 62.6 to 68.1 | |
0 |
Manganese (Mn), % | 14 to 15.5 | |
0 |
Nickel (Ni), % | 1.0 to 1.7 | |
0 |
Niobium (Nb), % | 0 | |
2.4 to 2.8 |
Nitrogen (N), % | 0.32 to 0.4 | |
0 |
Phosphorus (P), % | 0 to 0.060 | |
0 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.030 | |
0 |
Zirconium (Zr), % | 0 | |
96.8 to 97.5 |
Residuals, % | 0 | |
0 to 0.29 |