AISI 301 Stainless Steel vs. EN 1.1221 Steel
Both AISI 301 stainless steel and EN 1.1221 steel are iron alloys. They have 76% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is AISI 301 stainless steel and the bottom bar is EN 1.1221 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 190 to 440 | |
210 to 250 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 7.4 to 46 | |
10 to 21 |
Fatigue Strength, MPa | 210 to 600 | |
240 to 340 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
72 |
Shear Strength, MPa | 410 to 860 | |
450 to 520 |
Tensile Strength: Ultimate (UTS), MPa | 590 to 1460 | |
730 to 870 |
Tensile Strength: Yield (Proof), MPa | 230 to 1080 | |
390 to 550 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 840 | |
400 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1400 | |
1410 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 16 | |
48 |
Thermal Expansion, µm/m-K | 17 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
7.2 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.7 | |
8.3 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
2.1 |
Density, g/cm3 | 7.8 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.7 | |
1.5 |
Embodied Energy, MJ/kg | 39 | |
19 |
Embodied Water, L/kg | 130 | |
47 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 99 to 300 | |
67 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 130 to 2970 | |
410 to 800 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 21 to 52 | |
26 to 31 |
Strength to Weight: Bending, points | 20 to 37 | |
23 to 26 |
Thermal Diffusivity, mm2/s | 4.2 | |
13 |
Thermal Shock Resistance, points | 12 to 31 | |
23 to 28 |
Alloy Composition
Carbon (C), % | 0 to 0.15 | |
0.57 to 0.65 |
Chromium (Cr), % | 16 to 18 | |
0 to 0.4 |
Iron (Fe), % | 70.7 to 78 | |
97.1 to 98.8 |
Manganese (Mn), % | 0 to 2.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0 | |
0 to 0.1 |
Nickel (Ni), % | 6.0 to 8.0 | |
0 to 0.4 |
Nitrogen (N), % | 0 to 0.1 | |
0 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.035 |
Silicon (Si), % | 0 to 1.0 | |
0 to 0.4 |
Sulfur (S), % | 0 to 0.030 | |
0 to 0.035 |