MakeItFrom.com
Menu (ESC)

AISI 301 Stainless Steel vs. EN 1.4482 Stainless Steel

Both AISI 301 stainless steel and EN 1.4482 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 301 stainless steel and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 7.4 to 46
34
Fatigue Strength, MPa 210 to 600
420 to 450
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 410 to 860
510 to 530
Tensile Strength: Ultimate (UTS), MPa 590 to 1460
770 to 800
Tensile Strength: Yield (Proof), MPa 230 to 1080
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
430
Maximum Temperature: Mechanical, °C 840
980
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
38
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 18
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 300
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 2970
690 to 820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 52
28 to 29
Strength to Weight: Bending, points 20 to 37
24 to 25
Thermal Diffusivity, mm2/s 4.2
4.0
Thermal Shock Resistance, points 12 to 31
21 to 22

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.030
Chromium (Cr), % 16 to 18
19.5 to 21.5
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 70.7 to 78
66.1 to 74.9
Manganese (Mn), % 0 to 2.0
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 6.0 to 8.0
1.5 to 3.5
Nitrogen (N), % 0 to 0.1
0.050 to 0.2
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030