MakeItFrom.com
Menu (ESC)

AISI 301 Stainless Steel vs. CR003A Copper

AISI 301 stainless steel belongs to the iron alloys classification, while CR003A copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 301 stainless steel and the bottom bar is CR003A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 7.4 to 46
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 590 to 1460
230
Tensile Strength: Yield (Proof), MPa 230 to 1080
140

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 840
200
Melting Completion (Liquidus), °C 1420
1090
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
41
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 300
31
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 2970
83
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21 to 52
7.1
Strength to Weight: Bending, points 20 to 37
9.3
Thermal Diffusivity, mm2/s 4.2
110
Thermal Shock Resistance, points 12 to 31
8.1

Alloy Composition

Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
99.954 to 100
Iron (Fe), % 70.7 to 78
0 to 0.0010
Lead (Pb), % 0
0 to 0.00050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.045
0
Selenium (Se), % 0
0 to 0.00020
Silicon (Si), % 0 to 1.0
0
Silver (Ag), % 0
0 to 0.0025
Sulfur (S), % 0 to 0.030
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020