MakeItFrom.com
Menu (ESC)

AISI 301 Stainless Steel vs. Grade Ti-Pd8A Titanium

AISI 301 stainless steel belongs to the iron alloys classification, while grade Ti-Pd8A titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 301 stainless steel and the bottom bar is grade Ti-Pd8A titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 440
200
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 7.4 to 46
13
Fatigue Strength, MPa 210 to 600
260
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 590 to 1460
500
Tensile Strength: Yield (Proof), MPa 230 to 1080
430

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 840
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
21
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.9

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
49
Embodied Energy, MJ/kg 39
840
Embodied Water, L/kg 130
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 300
65
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 2970
880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 52
31
Strength to Weight: Bending, points 20 to 37
31
Thermal Diffusivity, mm2/s 4.2
8.6
Thermal Shock Resistance, points 12 to 31
39

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.1
Chromium (Cr), % 16 to 18
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.7 to 78
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.050
Nitrogen (N), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4