MakeItFrom.com
Menu (ESC)

AISI 301 Stainless Steel vs. C86200 Bronze

AISI 301 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 301 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 7.4 to 46
21
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 590 to 1460
710
Tensile Strength: Yield (Proof), MPa 230 to 1080
350

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 840
160
Melting Completion (Liquidus), °C 1420
940
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
35
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 39
49
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 300
120
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 2970
540
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 52
25
Strength to Weight: Bending, points 20 to 37
22
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 12 to 31
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 70.7 to 78
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0