MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. CC382H Copper-nickel

AISI 301L stainless steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
130
Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 22 to 50
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
53
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
490
Tensile Strength: Yield (Proof), MPa 250 to 790
290

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 890
260
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1390
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
41
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.2
Embodied Energy, MJ/kg 39
76
Embodied Water, L/kg 130
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
85
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 37
15
Strength to Weight: Bending, points 21 to 29
16
Thermal Diffusivity, mm2/s 4.1
8.2
Thermal Shock Resistance, points 14 to 24
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 70.7 to 78
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Nickel (Ni), % 6.0 to 8.0
29 to 32
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15