MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. C16500 Copper

AISI 301L stainless steel belongs to the iron alloys classification, while C16500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 50
1.5 to 53
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Shear Strength, MPa 440 to 660
200 to 310
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
280 to 530
Tensile Strength: Yield (Proof), MPa 250 to 790
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
340
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1390
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
250
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
61

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
42
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
41 to 1160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 37
8.6 to 17
Strength to Weight: Bending, points 21 to 29
11 to 16
Thermal Diffusivity, mm2/s 4.1
74
Thermal Shock Resistance, points 14 to 24
9.8 to 19

Alloy Composition

Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
97.8 to 98.9
Iron (Fe), % 70.7 to 78
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.7
Residuals, % 0
0 to 0.5