MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. C92900 Bronze

AISI 301L stainless steel belongs to the iron alloys classification, while C92900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is C92900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
84
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22 to 50
9.1
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
350
Tensile Strength: Yield (Proof), MPa 250 to 790
190

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
58
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
35
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 39
61
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
27
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
170
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 37
11
Strength to Weight: Bending, points 21 to 29
13
Thermal Diffusivity, mm2/s 4.1
18
Thermal Shock Resistance, points 14 to 24
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
82 to 86
Iron (Fe), % 70.7 to 78
0 to 0.2
Lead (Pb), % 0
2.0 to 3.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
2.8 to 4.0
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.7