MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. C96900 Copper-nickel

AISI 301L stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 22 to 50
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
850
Tensile Strength: Yield (Proof), MPa 250 to 790
830

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 890
210
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1390
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
39
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 39
72
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
38
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 37
27
Strength to Weight: Bending, points 21 to 29
23
Thermal Shock Resistance, points 14 to 24
30

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 70.7 to 78
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 2.0
0.050 to 0.3
Nickel (Ni), % 6.0 to 8.0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5