MakeItFrom.com
Menu (ESC)

AISI 301L Stainless Steel vs. N10675 Nickel

AISI 301L stainless steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301L stainless steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
220
Elongation at Break, % 22 to 50
47
Fatigue Strength, MPa 240 to 530
350
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
85
Shear Strength, MPa 440 to 660
610
Tensile Strength: Ultimate (UTS), MPa 620 to 1040
860
Tensile Strength: Yield (Proof), MPa 250 to 790
400

Thermal Properties

Latent Heat of Fusion, J/g 280
320
Maximum Temperature: Mechanical, °C 890
910
Melting Completion (Liquidus), °C 1430
1420
Melting Onset (Solidus), °C 1390
1370
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
80
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 2.7
16
Embodied Energy, MJ/kg 39
210
Embodied Water, L/kg 130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210 to 300
330
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1580
350
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
22
Strength to Weight: Axial, points 22 to 37
26
Strength to Weight: Bending, points 21 to 29
22
Thermal Diffusivity, mm2/s 4.1
3.1
Thermal Shock Resistance, points 14 to 24
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0 to 0.010
Chromium (Cr), % 16 to 18
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 70.7 to 78
1.0 to 3.0
Manganese (Mn), % 0 to 2.0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 6.0 to 8.0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1