MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. 364.0 Aluminum

AISI 301LN stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 23 to 51
7.5
Fatigue Strength, MPa 270 to 520
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 450 to 670
200
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
300
Tensile Strength: Yield (Proof), MPa 270 to 770
160

Thermal Properties

Latent Heat of Fusion, J/g 280
520
Maximum Temperature: Mechanical, °C 890
190
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
19
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 22 to 38
31
Strength to Weight: Bending, points 21 to 30
38
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 14 to 24
14

Alloy Composition

Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0.25 to 0.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 70.7 to 77.9
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 6.0 to 8.0
0 to 0.15
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15