MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. 380.0 Aluminum

AISI 301LN stainless steel belongs to the iron alloys classification, while 380.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is 380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
80
Elastic (Young's, Tensile) Modulus, GPa 200
74
Elongation at Break, % 23 to 51
3.0
Fatigue Strength, MPa 270 to 520
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 450 to 670
190
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
320
Tensile Strength: Yield (Proof), MPa 270 to 770
160

Thermal Properties

Latent Heat of Fusion, J/g 280
510
Maximum Temperature: Mechanical, °C 890
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
100
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
83

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.7
7.5
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 130
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
8.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 22 to 38
31
Strength to Weight: Bending, points 21 to 30
36
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 14 to 24
14

Alloy Composition

Aluminum (Al), % 0
79.6 to 89.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 70.7 to 77.9
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.5
Nickel (Ni), % 6.0 to 8.0
0 to 0.5
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.35
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5