MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. 5182 Aluminum

AISI 301LN stainless steel belongs to the iron alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 23 to 51
1.1 to 12
Fatigue Strength, MPa 270 to 520
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 450 to 670
170 to 240
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
280 to 420
Tensile Strength: Yield (Proof), MPa 270 to 770
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
94

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.9
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22 to 38
29 to 44
Strength to Weight: Bending, points 21 to 30
36 to 47
Thermal Diffusivity, mm2/s 4.0
53
Thermal Shock Resistance, points 14 to 24
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 70.7 to 77.9
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants