MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. 5652 Aluminum

AISI 301LN stainless steel belongs to the iron alloys classification, while 5652 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is 5652 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
47 to 77
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 23 to 51
6.8 to 25
Fatigue Strength, MPa 270 to 520
60 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 450 to 670
110 to 170
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
190 to 290
Tensile Strength: Yield (Proof), MPa 270 to 770
74 to 260

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 890
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
12 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
40 to 480
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 22 to 38
20 to 30
Strength to Weight: Bending, points 21 to 30
27 to 36
Thermal Diffusivity, mm2/s 4.0
57
Thermal Shock Resistance, points 14 to 24
8.4 to 13

Alloy Composition

Aluminum (Al), % 0
95.8 to 97.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0.15 to 0.35
Copper (Cu), % 0
0 to 0.040
Iron (Fe), % 70.7 to 77.9
0 to 0.4
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15

Comparable Variants