MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both AISI 301LN stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210 to 320
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 51
20
Fatigue Strength, MPa 270 to 520
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 450 to 670
420
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
670
Tensile Strength: Yield (Proof), MPa 270 to 770
470

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Mechanical, °C 890
600
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 39
37
Embodied Water, L/kg 130
88

Common Calculations

PREN (Pitting Resistance) 19
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22 to 38
24
Strength to Weight: Bending, points 21 to 30
22
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 14 to 24
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.030
0.080 to 0.12
Chromium (Cr), % 16 to 18
8.0 to 9.5
Iron (Fe), % 70.7 to 77.9
87.3 to 90.3
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 6.0 to 8.0
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.070 to 0.2
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010