MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. AWS E320LR

Both AISI 301LN stainless steel and AWS E320LR are iron alloys. They have 63% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23 to 51
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
580

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Melting Completion (Liquidus), °C 1430
1410
Melting Onset (Solidus), °C 1380
1360
Specific Heat Capacity, J/kg-K 480
460
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 39
87
Embodied Water, L/kg 130
220

Common Calculations

PREN (Pitting Resistance) 19
28
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 38
20
Strength to Weight: Bending, points 21 to 30
19
Thermal Shock Resistance, points 14 to 24
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16 to 18
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 70.7 to 77.9
32.7 to 42.5
Manganese (Mn), % 0 to 2.0
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 6.0 to 8.0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.015