MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. EN 1.4980 Stainless Steel

Both AISI 301LN stainless steel and EN 1.4980 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23 to 51
17
Fatigue Strength, MPa 270 to 520
410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
75
Shear Strength, MPa 450 to 670
630
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
1030
Tensile Strength: Yield (Proof), MPa 270 to 770
680

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 410
780
Maximum Temperature: Mechanical, °C 890
920
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
6.0
Embodied Energy, MJ/kg 39
87
Embodied Water, L/kg 130
170

Common Calculations

PREN (Pitting Resistance) 19
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
150
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 38
36
Strength to Weight: Bending, points 21 to 30
28
Thermal Diffusivity, mm2/s 4.0
3.5
Thermal Shock Resistance, points 14 to 24
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.030
0.030 to 0.080
Chromium (Cr), % 16 to 18
13.5 to 16
Iron (Fe), % 70.7 to 77.9
49.2 to 58.5
Manganese (Mn), % 0 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 6.0 to 8.0
24 to 27
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5