MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C42600 Brass

AISI 301LN stainless steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 51
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 450 to 670
280 to 470
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
410 to 830
Tensile Strength: Yield (Proof), MPa 270 to 770
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 890
180
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
26

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 38
13 to 27
Strength to Weight: Bending, points 21 to 30
14 to 23
Thermal Diffusivity, mm2/s 4.0
33
Thermal Shock Resistance, points 14 to 24
15 to 29

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 70.7 to 77.9
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0.050 to 0.2
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0.020 to 0.050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2