MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C64700 Bronze

AISI 301LN stainless steel belongs to the iron alloys classification, while C64700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C64700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 51
9.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 450 to 670
390
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
660
Tensile Strength: Yield (Proof), MPa 270 to 770
560

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1430
1090
Melting Onset (Solidus), °C 1380
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
38

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
57
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
1370
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 22 to 38
21
Strength to Weight: Bending, points 21 to 30
19
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 14 to 24
24

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
95.8 to 98
Iron (Fe), % 70.7 to 77.9
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
1.6 to 2.2
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5