MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C67000 Bronze

AISI 301LN stainless steel belongs to the iron alloys classification, while C67000 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C67000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23 to 51
5.6 to 11
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
42
Shear Strength, MPa 450 to 670
390 to 510
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
660 to 880
Tensile Strength: Yield (Proof), MPa 270 to 770
350 to 540

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 890
160
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1380
850
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
99
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
25

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 39
49
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
43 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
560 to 1290
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22 to 38
23 to 31
Strength to Weight: Bending, points 21 to 30
21 to 26
Thermal Diffusivity, mm2/s 4.0
30
Thermal Shock Resistance, points 14 to 24
21 to 29

Alloy Composition

Aluminum (Al), % 0
3.0 to 6.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
63 to 68
Iron (Fe), % 70.7 to 77.9
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Nickel (Ni), % 6.0 to 8.0
0
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
21.8 to 32.5
Residuals, % 0
0 to 0.5