MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C70600 Copper-nickel

AISI 301LN stainless steel belongs to the iron alloys classification, while C70600 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 51
3.0 to 34
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
46
Shear Strength, MPa 450 to 670
190 to 330
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
290 to 570
Tensile Strength: Yield (Proof), MPa 270 to 770
63 to 270

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 890
220
Melting Completion (Liquidus), °C 1430
1150
Melting Onset (Solidus), °C 1380
1100
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
44
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 39
51
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
6.5 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
16 to 290
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 38
9.1 to 18
Strength to Weight: Bending, points 21 to 30
11 to 17
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 14 to 24
9.8 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
84.7 to 90
Iron (Fe), % 70.7 to 77.9
1.0 to 1.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 6.0 to 8.0
9.0 to 11
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5