MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C82800 Copper

AISI 301LN stainless steel belongs to the iron alloys classification, while C82800 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C82800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23 to 51
1.0 to 20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
670 to 1140
Tensile Strength: Yield (Proof), MPa 270 to 770
380 to 1000

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 890
310
Melting Completion (Liquidus), °C 1430
930
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
19

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 39
190
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
590 to 4080
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22 to 38
21 to 36
Strength to Weight: Bending, points 21 to 30
20 to 28
Thermal Diffusivity, mm2/s 4.0
36
Thermal Shock Resistance, points 14 to 24
23 to 39

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.5 to 2.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
94.6 to 97.2
Iron (Fe), % 70.7 to 77.9
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 0.2
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0.2 to 0.35
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5