MakeItFrom.com
Menu (ESC)

AISI 301LN Stainless Steel vs. C93600 Bronze

AISI 301LN stainless steel belongs to the iron alloys classification, while C93600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 301LN stainless steel and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 23 to 51
14
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
36
Tensile Strength: Ultimate (UTS), MPa 630 to 1060
260
Tensile Strength: Yield (Proof), MPa 270 to 770
140

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 890
150
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 16
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
51
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220 to 290
31
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 1520
98
Stiffness to Weight: Axial, points 14
6.1
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 22 to 38
7.9
Strength to Weight: Bending, points 21 to 30
9.9
Thermal Diffusivity, mm2/s 4.0
16
Thermal Shock Resistance, points 14 to 24
9.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
79 to 83
Iron (Fe), % 70.7 to 77.9
0 to 0.2
Lead (Pb), % 0
11 to 13
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 6.0 to 8.0
0 to 1.0
Nitrogen (N), % 0.070 to 0.2
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.7