MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. 359.0 Aluminum

AISI 302 stainless steel belongs to the iron alloys classification, while 359.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is 359.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 440
90 to 100
Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 4.5 to 46
3.8 to 4.9
Fatigue Strength, MPa 210 to 520
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 400 to 830
220 to 230
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
340 to 350
Tensile Strength: Yield (Proof), MPa 230 to 1100
250 to 280

Thermal Properties

Latent Heat of Fusion, J/g 280
530
Maximum Temperature: Mechanical, °C 710
170
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
120

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 140
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
12 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
450 to 540
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 21 to 51
37 to 38
Strength to Weight: Bending, points 20 to 36
42 to 43
Thermal Diffusivity, mm2/s 4.4
59
Thermal Shock Resistance, points 12 to 31
16 to 17

Alloy Composition

Aluminum (Al), % 0
88.9 to 91
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 67.9 to 75
0 to 0.2
Magnesium (Mg), % 0
0.5 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.1
Nickel (Ni), % 8.0 to 10
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
8.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15