MakeItFrom.com
Menu (ESC)

AISI 302 Stainless Steel vs. C95520 Bronze

AISI 302 stainless steel belongs to the iron alloys classification, while C95520 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 302 stainless steel and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 440
280
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 4.5 to 46
2.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
44
Tensile Strength: Ultimate (UTS), MPa 580 to 1430
970
Tensile Strength: Yield (Proof), MPa 230 to 1100
530

Thermal Properties

Latent Heat of Fusion, J/g 280
240
Maximum Temperature: Mechanical, °C 710
240
Melting Completion (Liquidus), °C 1420
1070
Melting Onset (Solidus), °C 1400
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 42
58
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59 to 260
21
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 3070
1210
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 51
33
Strength to Weight: Bending, points 20 to 36
27
Thermal Diffusivity, mm2/s 4.4
11
Thermal Shock Resistance, points 12 to 31
33

Alloy Composition

Aluminum (Al), % 0
10.5 to 11.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
74.5 to 81.3
Iron (Fe), % 67.9 to 75
4.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 8.0 to 10
4.2 to 6.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5