MakeItFrom.com
Menu (ESC)

AISI 303 Stainless Steel vs. 224.0 Aluminum

AISI 303 stainless steel belongs to the iron alloys classification, while 224.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 303 stainless steel and the bottom bar is 224.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 40 to 51
4.0 to 10
Fatigue Strength, MPa 230 to 360
86 to 120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Tensile Strength: Ultimate (UTS), MPa 600 to 690
380 to 420
Tensile Strength: Yield (Proof), MPa 230 to 420
280 to 330

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 930
220
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
32
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
95

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 42
160
Embodied Water, L/kg 140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
16 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 440
540 to 770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 21 to 25
35 to 38
Strength to Weight: Bending, points 20 to 22
38 to 41
Thermal Diffusivity, mm2/s 4.4
47
Thermal Shock Resistance, points 13 to 15
17 to 18

Alloy Composition

Aluminum (Al), % 0
93 to 95.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
4.5 to 5.5
Iron (Fe), % 67.3 to 74.9
0 to 0.1
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 1.0
0 to 0.060
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
0 to 0.35
Vanadium (V), % 0
0.050 to 0.15
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.1