MakeItFrom.com
Menu (ESC)

AISI 303 Stainless Steel vs. ASTM A182 Grade F122

Both AISI 303 stainless steel and ASTM A182 grade F122 are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 303 stainless steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40 to 51
23
Fatigue Strength, MPa 230 to 360
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 430 to 470
450
Tensile Strength: Ultimate (UTS), MPa 600 to 690
710
Tensile Strength: Yield (Proof), MPa 230 to 420
450

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 930
600
Melting Completion (Liquidus), °C 1450
1490
Melting Onset (Solidus), °C 1400
1440
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
24
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.0
3.0
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 140
100

Common Calculations

PREN (Pitting Resistance) 18
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
140
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 440
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
25
Strength to Weight: Bending, points 20 to 22
22
Thermal Diffusivity, mm2/s 4.4
6.4
Thermal Shock Resistance, points 13 to 15
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.15
0.070 to 0.14
Chromium (Cr), % 17 to 19
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 67.3 to 74.9
81.3 to 87.7
Manganese (Mn), % 0 to 2.0
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 8.0 to 10
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.2
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0.15 to 0.35
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010