MakeItFrom.com
Menu (ESC)

AISI 303 Stainless Steel vs. EN 1.8902 Steel

Both AISI 303 stainless steel and EN 1.8902 steel are iron alloys. They have 73% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 303 stainless steel and the bottom bar is EN 1.8902 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40 to 51
21
Fatigue Strength, MPa 230 to 360
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 430 to 470
380
Tensile Strength: Ultimate (UTS), MPa 600 to 690
600
Tensile Strength: Yield (Proof), MPa 230 to 420
420

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 930
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
44
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.6
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 42
24
Embodied Water, L/kg 140
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 440
470
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
21
Strength to Weight: Bending, points 20 to 22
20
Thermal Diffusivity, mm2/s 4.4
12
Thermal Shock Resistance, points 13 to 15
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.015
Carbon (C), % 0 to 0.15
0 to 0.22
Chromium (Cr), % 17 to 19
0 to 0.35
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 67.3 to 74.9
95 to 99.05
Manganese (Mn), % 0 to 2.0
1.0 to 1.8
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 8.0 to 10
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0 to 0.2
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.65
Sulfur (S), % 0.15 to 0.35
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.22