MakeItFrom.com
Menu (ESC)

AISI 303 Stainless Steel vs. Nickel 890

AISI 303 stainless steel belongs to the iron alloys classification, while nickel 890 belongs to the nickel alloys. They have 54% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 303 stainless steel and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40 to 51
39
Fatigue Strength, MPa 230 to 360
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 430 to 470
400
Tensile Strength: Ultimate (UTS), MPa 600 to 690
590
Tensile Strength: Yield (Proof), MPa 230 to 420
230

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Mechanical, °C 930
1000
Melting Completion (Liquidus), °C 1450
1390
Melting Onset (Solidus), °C 1400
1340
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 17
14

Otherwise Unclassified Properties

Base Metal Price, % relative 15
47
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 42
120
Embodied Water, L/kg 140
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 440
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 25
20
Strength to Weight: Bending, points 20 to 22
19
Thermal Shock Resistance, points 13 to 15
15

Alloy Composition

Aluminum (Al), % 0
0.050 to 0.6
Carbon (C), % 0 to 0.15
0.060 to 0.14
Chromium (Cr), % 17 to 19
23.5 to 28.5
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 67.3 to 74.9
17.3 to 33.9
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 8.0 to 10
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0.15 to 0.35
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0
0.15 to 0.6