MakeItFrom.com
Menu (ESC)

AISI 303 Stainless Steel vs. C85900 Brass

AISI 303 stainless steel belongs to the iron alloys classification, while C85900 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 303 stainless steel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 210
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 40 to 51
30
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 600 to 690
460
Tensile Strength: Yield (Proof), MPa 230 to 420
190

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 930
130
Melting Completion (Liquidus), °C 1450
830
Melting Onset (Solidus), °C 1400
790
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
89
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
28

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.0
2.9
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 440
170
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 25
16
Strength to Weight: Bending, points 20 to 22
17
Thermal Diffusivity, mm2/s 4.4
29
Thermal Shock Resistance, points 13 to 15
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 67.3 to 74.9
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 2.0
0 to 0.010
Nickel (Ni), % 8.0 to 10
0 to 1.5
Phosphorus (P), % 0 to 0.2
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0.15 to 0.35
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7