MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. 6070 Aluminum

AISI 304 stainless steel belongs to the iron alloys classification, while 6070 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is 6070 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 8.0 to 43
5.6 to 8.6
Fatigue Strength, MPa 210 to 440
95 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 400 to 690
220 to 240
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
370 to 380
Tensile Strength: Yield (Proof), MPa 230 to 860
350

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 710
160
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
140

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 43
150
Embodied Water, L/kg 150
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
20 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
880 to 900
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21 to 42
38
Strength to Weight: Bending, points 20 to 32
42 to 43
Thermal Diffusivity, mm2/s 4.2
65
Thermal Shock Resistance, points 12 to 25
16 to 17

Alloy Composition

Aluminum (Al), % 0
94.6 to 98
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 66.5 to 74
0 to 0.5
Magnesium (Mg), % 0
0.5 to 1.2
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
1.0 to 1.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15