MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. Grade Ti-Pd18 Titanium

AISI 304 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 360
320
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
17
Fatigue Strength, MPa 210 to 440
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
710
Tensile Strength: Yield (Proof), MPa 230 to 860
540

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 710
330
Melting Completion (Liquidus), °C 1450
1640
Melting Onset (Solidus), °C 1400
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
8.2
Thermal Expansion, µm/m-K 17
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
41
Embodied Energy, MJ/kg 43
670
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 42
44
Strength to Weight: Bending, points 20 to 32
39
Thermal Diffusivity, mm2/s 4.2
3.3
Thermal Shock Resistance, points 12 to 25
52

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.5 to 74
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 0.050
Nitrogen (N), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4