MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. Grade Ti-Pd7B Titanium

AISI 304 stainless steel belongs to the iron alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170 to 360
180
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.0 to 43
17
Fatigue Strength, MPa 210 to 440
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
390
Tensile Strength: Yield (Proof), MPa 230 to 860
310

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 710
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 17
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
49
Embodied Energy, MJ/kg 43
840
Embodied Water, L/kg 150
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
62
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 21 to 42
24
Strength to Weight: Bending, points 20 to 32
26
Thermal Diffusivity, mm2/s 4.2
8.9
Thermal Shock Resistance, points 12 to 25
30

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 18 to 20
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.5 to 74
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0 to 0.050
Nitrogen (N), % 0 to 0.1
0
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4