MakeItFrom.com
Menu (ESC)

AISI 304 Stainless Steel vs. C46200 Brass

AISI 304 stainless steel belongs to the iron alloys classification, while C46200 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 304 stainless steel and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 8.0 to 43
17 to 34
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 400 to 690
240 to 290
Tensile Strength: Ultimate (UTS), MPa 580 to 1180
370 to 480
Tensile Strength: Yield (Proof), MPa 230 to 860
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 710
120
Melting Completion (Liquidus), °C 1450
840
Melting Onset (Solidus), °C 1400
800
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
46
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86 to 250
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 1870
72 to 400
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 42
13 to 16
Strength to Weight: Bending, points 20 to 32
14 to 17
Thermal Diffusivity, mm2/s 4.2
35
Thermal Shock Resistance, points 12 to 25
12 to 16

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 66.5 to 74
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4